

SOLUTIONS

Module - 2 / JEE-2022

IN-CHAPTER EXERCISES Chemistry Chemical Equilibrium

EXERCISE-A

1.
$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $K_p = 3.4$
 $t = t \quad 0.4 \quad 0.2 \quad 0.6$

$$Q_P = \frac{p_{SO_3}^2}{p_{SO_2}^2 \cdot p_{O_2}} = \frac{(0.6)^2}{(0.4)^2 \times 0.2} = 11.25 > K_p \qquad \Rightarrow \text{ Reaction is moving in backward direction.}$$

2.
$$I_2(g) \iff 2I(g) \qquad K_p = 1.80 \times 10^{-10}$$

$$t = t \qquad 1 \qquad 0.5 \times 10^{-6}$$
 (Partial P)

$$Q_p = \frac{p_I^2}{p_{I_2}} = \frac{(0.5 \times 10^{-6})^2}{1} = 2.5 \times 10^{-13}$$

As $Q_p < K_p$, reaction is moving in forward direction.

3. (i)
$$\begin{array}{cccc} CaCO_3(s) & \Longrightarrow & CaO(s) + CO_2(g) \\ & t=0 & a & 0 & 0 \\ & & & \\ & (moles) & \\ & t=t_{eq} & a-x & x & x \\ & & K_C = [CO_2] = \frac{x}{V} & [\because a_{CaCO_3} = a_{CaO} = 1] \\ & & K_P = p_{CO_2} = P \end{array}$$

(ii)
$$\begin{aligned} &H_2O(\ell) + CO_2(g) & \Longleftrightarrow H_2CO_3(aq.) \\ &K_C = \frac{[H_2CO_3]}{[CO_2]} \\ &K_P = \frac{1}{p_{CO}} \left[a_{H_2O(\ell)} = 1 \right] \end{aligned}$$

(iii)
$$2NH_3(g) \Longrightarrow N_2(g) + 3H_2(g)$$

$$t = 0 \qquad a \qquad 0 \qquad 0$$

$$(moles) \qquad \qquad t = t_{eq} \qquad a - 2x \qquad x \qquad 3x$$

$$K_{C} = \frac{[N_{2}][H_{2}]^{3}}{[NH_{3}]^{2}} = \frac{\frac{x}{V} \cdot \left(\frac{3x}{V}\right)^{3}}{\left(\frac{a-2x}{V}\right)^{2}} ; K_{P} = \frac{p_{N_{2}} \cdot p_{H_{2}}^{3}}{p_{NH_{3}}^{2}} = \frac{\left(\frac{x}{a+2x} \cdot P\right) \left(\frac{3x}{a+2x} \cdot P\right)^{3}}{\left(\frac{a-2x}{a+2x} \cdot P\right)^{2}}$$

(iv)
$$2\text{HgO}(s) \rightleftharpoons 2\text{Hg}(\ell) + O_2(g)$$

 $K_C = [O_2]$

$$K_{C} = [O_{2}]$$

$$K_{P} = p_{O_{2}}$$

$$[:: a_{HgO} = a_{Hg} = 1]$$

4.
$$SO_2(g) + \frac{1}{2}O_2(g) \Longrightarrow SO_3(g)$$
 $K_p = 1.8$

$$SO_2(g) + \frac{1}{2}O_2(g) \Longrightarrow SO_3(g)$$
 $K_P = 1.8$
 $CO_2(g) \Longrightarrow CO(g) + \frac{1}{2}O_2(g)$ $K_P = 5 \times 10^{-10}$

$$SO_2(g) + CO_2(g) \Longrightarrow SO_3(g) + CO(g)$$
 $K_P = 1.8 \times 5 \times 10^{-10} = 9 \times 10^{-10}$

5.
$$2SO_2(g) + O_2(g) \implies 2SO_3(g) K_c = ?$$

$$2SO_3(g) \Longrightarrow 2SO_2(g) + O_2(g)$$

$$t=0$$

(moles)
$$t = t_{eq} \qquad 3 - 2x \qquad 2x \qquad x$$

$$\Rightarrow$$
 $[SO_3] = \frac{3-2x}{8}$; $[SO_2] = \frac{2x}{8}$; $[O_2] = \frac{x}{8}$; $[O_2] = \frac{x}{8}$; $[O_2] = x = 0.6$

$$K_C = \frac{\left[SO_2\right]^2 \left[O_2\right]}{\left[SO_3\right]^2} = \frac{1}{30}$$

$$\Rightarrow$$
 2SO₂(g) + O₂(g) \rightleftharpoons 2SO₃(g) $K_C = 30$

6.
$$COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$$
 $K_p = 8 \times 10^{-8}$

$$t=0$$
 a 0 (moles)

$$t = t_{-}$$
 $a - x$ x x

$$K_{P} = \frac{p_{CO} \cdot p_{Cl_{2}}}{p_{COCl_{2}}} = \frac{\left(\frac{x}{a+x} \cdot P\right) \left(\frac{x}{a+x} \cdot P\right)}{\left(\frac{a-x}{a+x} \cdot P\right)} \Rightarrow K_{P} = \frac{x^{2}P}{a^{2}-x^{2}} = \frac{\alpha^{2}P}{1-\alpha^{2}} \left[\alpha = \frac{x}{a}\right]$$

Here,
$$K_p = 8 \times 10^{-8} << 1 \implies 1 - \alpha^2 \approx 1 \implies 8 \times 10^{-8} = \alpha^2 \times 2 \implies \alpha = 2 \times 10^{-4} = 0.02\%$$
 [Check the approximation]

7.
$$N_2O_4(g) \iff 2NO_2(g)$$

$$t=0 \qquad a \qquad 0$$

(moles)

$$K_p = \frac{p_{NO_2}^2}{p_{N_2O_4}} = \frac{\left(\frac{2a\alpha}{a + a\alpha} \cdot P\right)^2}{\frac{a - a\alpha}{a + a\alpha}P} = \frac{4\alpha^2 P}{1 - \alpha^2}$$

$$K_{P} \text{ will remain same as T is const.} \quad \Rightarrow \qquad \frac{4\alpha_{1}^{2} P_{1}}{1-\alpha_{1}^{2}} = \frac{4\alpha_{2}^{2} P_{2}}{1-\alpha_{2}^{2}} \qquad \qquad [\alpha_{1} = 0.2 ; P_{1} = 1.0 \text{atm}; P_{2} = 0.2 \text{atm}]$$

 $\Rightarrow \alpha_2 = 0.41$

8.(C)
$$P_4(g) + 6Cl_2(g) \iff 4PCl_3(g)$$

$$t=0$$

$$t = t_{eq} \quad a - x \quad a - 6x \qquad 4x$$

$$[Cl_2] = \frac{a - 6x}{V}$$
; $[PCl_3] = \frac{4x}{V}$; $[P_4] = \frac{a - x}{V}$

Clearly, $[Cl_2] < [P_4]$

9.(D)
$$A + 2B \rightleftharpoons C : K_{eq} = K_1$$

$$C + D \Longrightarrow 3A : K_{eq} = K_2$$

Multiply (i) by 3 and add to (ii) to get: $6B+D \implies 2C$

$$K_{eq} = K_3$$

$$\Rightarrow$$
 $K_{eq} = K_1^3 \cdot K_2 = K_3$

10.(B)
$$N_2O_4(g) \Longrightarrow 2NO_2(g)$$
 $K_C = 4$

$$K_{\alpha} = 4$$

From graph, at point A, Q = 0

When $[N_2O_4] = [NO_2] = 0.1 \text{ M}$

$$\Rightarrow \qquad Q = \frac{[NO_2]^2}{[N_2O_4]} = 0.1 < K_C \Rightarrow \text{Reaction is moving in forward direction.}$$

At point D or F, $[NO_2]$ and $[N_2O_4]$ is const. with time \Rightarrow Achievement of chemical equilibrium.

11.(B)
$$N_2O_4$$
 at 300 K; $P = 1$ atm

$$\Rightarrow$$
 N₂O₄ at 600 K; P = 2atm [P is proportional to T]

$$N_2O_4(g) \Longrightarrow 2NO_2(g)$$

$$t = 0$$
 (Partial P)

$$t = t_{eq}$$
 $P_0 - x$

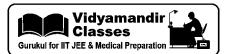
$$P_{\text{Total}} = P_0 - x + 2x = P_0 + x = 2.4 \text{ atm } [\because \alpha = \frac{x}{P_0} = 0.2 \text{ and } P_0 = 2 \text{atm}]$$

12.(C) (i)
$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

$$K_1 = p_{CO_2} = P = 1atm$$

(ii)
$$NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$$

$$K_2 = p_{NH_3} \cdot p_{H_2S} = \frac{P}{2} \cdot \frac{P}{2} = \frac{1}{4}$$


(iii)
$$NH_2COONH_3(s) \Longrightarrow 2NH_3(g) + CO_2(g)$$

$$K_3 = p_{NH_3}^2 \cdot p_{CO_2} = \left(\frac{2P}{3}\right)^2 \cdot \frac{P}{3} = \frac{4}{27}$$
 \Rightarrow $K_1 > K_2 > K_3$

13.(A)
$$FeO(s) + CO(g) \Longrightarrow Fe(s) + CO_2(g)$$

$$K_C = \frac{[CO_2]}{[CO]} = 5$$
 \Rightarrow $[CO_2] = 5 \times 0.025 = 0.125 M$

14.(C) Large amount of Reactants and Small amount of products ⇒ Reaction is not favorable in forward direction.

$$\Rightarrow \qquad K_{eq} = \frac{k_f}{k_b} << 1 \quad \Rightarrow \quad k_f << k_b$$

- **15.(D)** For a chemical reaction to be at equilibrium, $r_f = r_b$
- **16.(AB)** A reaction at equilibrium, can be shifted only when $Q \le K_{eq}$ or $Q \ge K_{eq}$.
- **17.(ABCD)** Properties of equilibrium.

[Note: "Permanency" is a feature of equilibrium in the sense that whenever there is a change in the reaction conditions, reaction adjusts itself so as to attain a new equilibrium.]

18.(A)
$$AB(g) \rightleftharpoons A(g) + B(g)$$

$$t = 0 \quad a \quad 0 \quad 0$$

$$(moles)$$

$$t = t_{eq} \quad a - x \quad x \quad x$$

$$\Rightarrow K_{P} = \frac{p_{A} \cdot p_{B}}{p_{AB}} = \frac{\left(\frac{x}{a + x} \cdot P\right) \left(\frac{x}{a + x} \cdot P\right)}{\left(\frac{a - x}{a + x} \cdot P\right)}$$

$$\Rightarrow K_{p} = \frac{x^{2}P}{a^{2} - x^{2}} \text{ and } \alpha = \frac{x}{a} = \frac{1}{3} \quad \Rightarrow \quad P = 8 K_{p}$$

19.(D) K_{eq} depends only on T

22.(C)

20.(D)
$$AB(g) \Longrightarrow A(g) + B(g)$$

$$t = 0 \qquad 1 \qquad 0 \qquad 0$$

$$(moles)$$

$$t = t_{eq} \qquad 1 - \alpha \qquad \alpha \qquad \alpha$$

$$\Rightarrow \qquad K_p = \frac{p_A \cdot p_B}{p_{AB}} = \frac{\left(\frac{\alpha}{1 + \alpha} \cdot P\right) \left(\frac{\alpha}{1 + \alpha} \cdot P\right)}{\frac{1 - \alpha}{1 + \alpha} \cdot P}$$

$$\Rightarrow \qquad K_P = \frac{\alpha^2 P}{1 - \alpha^2} = 4 P \text{ (given)} \Rightarrow \alpha = 0.9$$

21.(ABC) At initial stages of the reaction. Q = 0 but increases.

Also, initially increase in Q is high but its rate of increase decreases with time i.e. initially Q will increase rapidly but as the reaction proceeds, Q will change (increase) slowly and slowly.

At eq. (moles)
$$K_{C} = \frac{[Z]^{3}}{[X][Y]} = \frac{\left(\frac{4}{3}\right)^{3}}{\frac{1}{2} \cdot \frac{2}{3}} = 10.67 < Q(=15) \implies \text{Reaction is moving in backward direction.}$$

[JEE-2022/Module - 2] Chemistry

EXERCISE-B

1.
$$2SO_2(g) + O_2(g) \iff 2SO_3(g)$$

$$t = t_{eq} \qquad 0.6 \qquad 0.1 \qquad 0.3$$
(Partial P)

$$K_{P} = \frac{p_{SO_{3}}^{2}}{p_{SO_{2}}^{2} \cdot p_{O_{2}}} = \frac{(0.3)^{2}}{(0.6)^{2} \times 0.1} = 2.5 ; \qquad K_{P} = \frac{p_{SO_{3}}^{2}}{p_{SO_{2}}^{2} \cdot p_{O_{2}}} = \frac{1}{p_{O_{2}}} \left[\because p_{SO_{3}} = p_{SO_{2}} \text{ (given)} \right]$$

$$\Rightarrow p_{O_{2}} = \frac{1}{K_{P}} = 0.4$$

2.
$$PCl_{5}(g) \rightleftharpoons PCl_{3}(g) + Cl_{2}(g)$$

$$t = 0 \qquad a \qquad 0 \qquad 0$$

(moles)
$$t = t_{eq} \qquad a - x \qquad x \qquad x$$

$$K_{P} = \frac{p_{PCl_{3}} \cdot p_{Cl_{2}}}{p_{PCl_{5}}} = \frac{\left[\frac{x}{a + x} \cdot P\right] \left[\frac{x}{a + x} \cdot P\right]}{\frac{a - x}{a + x} \cdot P} \quad \Rightarrow \quad K_{P} = \frac{x^{2}P}{a^{2} - x^{2}} = \frac{\alpha^{2}P}{1 - \alpha^{2}} = 0.3 \left[\alpha = \frac{x}{a}\right] \quad \Rightarrow \quad \alpha = \sqrt{\frac{1}{6}}$$

%
$$Cl_2 = \frac{x}{a+x} = \frac{\alpha}{1+\alpha} \times 100\% = 29.1 \%$$
 [**Note :** For a gaseous mixture, mole % = volume %]

3.(B) Yield $_{\text{max}} \equiv \text{Amount of Product should be max.}$

 $P\uparrow \Rightarrow$ Reaction will shift where $\Delta n_g < 0$.

Clearly, $2H_2(g) + O_2(g) \Longrightarrow 2H_2O(g)$; $\Delta n_g = -1$

4.(C) $H_2O(\ell) \Longrightarrow H_2O(g)$

Increasing P, will shift the reaction in backward direction. \Rightarrow Increase in boiling point.

5.(D) All are facts. (Concept of Activation energy will be discussed in 12th class)

6.(A)
$$NH_2COONH_4(s) \Longrightarrow 2NH_3(g) + CO_2(g)$$

$$Q = p_{NH_3}^2 \cdot p_{CO_2} = 10^2 \times 30 = 3000 > K_P$$

 \Rightarrow Reaction will shift in backward direction: $P_{Total} = p_{NH_3} + p_{CO_2} < 40$ atm at equilibrium.

7.(C)
$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

$$t=0 \qquad a \qquad 0$$
(moles)

$$t = t_{eq}$$
 $a - a\alpha$ $2a\alpha$

$$\frac{M_{\text{mix},i}}{M_{\text{min},f}} = \frac{n_f}{n_i} = \frac{d_i}{d_f} \qquad \Rightarrow \qquad \frac{1+\alpha}{1} = \frac{92/2}{26} \Rightarrow \alpha = 0.76 \text{ [Note : "Observed" means "Experimental"]}$$

- **8.(D)** K_p changes only when T is changed.
- **9.(C)** Addition of inert gas doesn't change K_p and K_C .
- 10.(C) Ice \Longrightarrow water

This equlibrium is shifted in forward direction (melting) by the application of pressure.

IN-CHAPTER EXERCISES

11.(C)
$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$$

Introducing inert gas at constant volume, doesn't shift equilibrium.

Introducing inert gas at constant P, shifts the reaction in a direction when $\Delta n_{_g}\!>\!0.$

12.(ACD)
$$P^{\uparrow} \Rightarrow \text{reaction shift where } \Delta n_g < 0.$$

Check yourself for the reactions having $\Delta n_{\rm g}\!<\!0$ in forward direction.

13.(A)
$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

$$\left. \begin{array}{l} 500\,K\colon K_P = 1.7\times 10^3 \\ \text{and } 600\,K\colon K_P = 1.78\times 10^4 \end{array} \right\} Endothermic reaction. \mbox{ (} \because K_P \mbox{ increases with temperature)}$$

Increasing P will shift the reaction in backward direction.

14.(B)
$$K_{eq.}$$
 remains same even in the presence of catalyst.

15.(D)
$$C_2H_4(g) + H_2(g) \rightleftharpoons C_2H_6(g) \Delta H = -32.7 \text{ K cal.}$$

[C₂H₄] can be increased by : removing H₂, adding C₂H₆, increasing T, decreasing P.

16.(B)

[JEE-2022/Module - 2] Chemistry